Как устроены нейронные сети? Нейронные сети: практическое применение Как устроены нейронные сети.

В последнее время все чаще и чаще говорят про так званные нейронные сети, дескать вскоре они будут активно применятся и в роботехнике, и в машиностроении, и во многих других сферах человеческой деятельности, ну а алгоритмы поисковых систем, того же Гугла уже потихоньку начинают на них работать. Что же представляют собой эти нейронные сети, как они работают, какое у них применение и чем они могут стать полезными для нас, обо всем этом читайте дальше.

Что такое нейронные сети

Нейронные сети – это одно из направлений научных исследований в области создания искусственного интеллекта (ИИ) в основе которого лежит стремление имитировать нервную систему человека. В том числе ее (нервной системы) способность исправлять ошибки и самообучаться. Все это, хотя и несколько грубо должно позволить смоделировать работу человеческого мозга.

Биологические нейронные сети

Но это определение абзацем выше чисто техническое, если же говорить языком биологии, то нейронная сеть представляет собой нервную систему человека, ту совокупность нейронов в нашем мозге, благодаря которым мы думаем, принимаем те или иные решения, воспринимаем мир вокруг нас.

Биологический нейрон – это специальная клетка, состоящая из ядра, тела и отростков, к тому же имеющая тесную связь с тысячами других нейронов. Через эту связь то и дело передаются электрохимические импульсы, приводящие всю нейронную сеть в состояние возбуждение или наоборот спокойствия. Например, какое-то приятное и одновременно волнующее событие (встреча любимого человека, победа в соревновании и т. д.) породит электрохимический импульс в нейронной сети, которая располагается в нашей голове, что приведет к ее возбуждению. Как следствие, нейронная сеть в нашем мозге свое возбуждение передаст и другим органам нашего тела и приведет к повышенному сердцебиению, более частому морганию глаз и т. д.

Тут на картинке приведена сильно упрощенная модель биологической нейронной сети мозга. Мы видим, что нейрон состоит из тела клетки и ядра, тело клетки, в свою очередь, имеет множество ответвленных волокон, названых дендритами. Длинные дендриты называются аксонами и имеют протяженность много большую, нежели показано на этом рисунке, посредством аксонов осуществляется связь между нейронами, благодаря ним и работает биологическая нейронная сеть в наших с вами головах.

История нейронных сетей

Какова же история развития нейронных сетей в науке и технике? Она берет свое начало с появлением первых компьютеров или ЭВМ (электронно-вычислительная машина) как их называли в те времена. Так еще в конце 1940-х годов некто Дональд Хебб разработал механизм нейронной сети, чем заложил правила обучения ЭВМ, этих «протокомпьютеров».

Дальнейшая хронология событий была следующей:

  • В 1954 году происходит первое практическое использование нейронных сетей в работе ЭВМ.
  • В 1958 году Франком Розенблатом разработан алгоритм распознавания образов и математическая аннотация к нему.
  • В 1960-х годах интерес к разработке нейронных сетей несколько угас из-за слабых мощностей компьютеров того времени.
  • И снова возродился уже в 1980-х годах, именно в этот период появляется система с механизмом обратной связи, разрабатываются алгоритмы самообучения.
  • К 2000 году мощности компьютеров выросли настолько, что смогли воплотить самые смелые мечты ученых прошлого. В это время появляются программы распознавания голоса, компьютерного зрения и многое другое.

Искусственные нейронные сети

Под искусственными нейронными сетями принято понимать вычислительные системы, имеющие способности к самообучению, постепенному повышению своей производительности. Основными элементами структуры нейронной сети являются:

  • Искусственные нейроны, представляющие собой элементарные, связанные между собой единицы.
  • Синапс – это соединение, которые используется для отправки-получения информации между нейронами.
  • Сигнал – собственно информация, подлежащая передаче.

Применение нейронных сетей

Область применения искусственных нейронных сетей с каждым годом все более расширяется, на сегодняшний день они используются в таких сферах как:

  • Машинное обучение (machine learning), представляющее собой разновидность искусственного интеллекта. В основе его лежит обучение ИИ на примере миллионов однотипных задач. В наше время машинное обучение активно внедряют поисковые системы Гугл, Яндекс, Бинг, Байду. Так на основе миллионов поисковых запросов, которые все мы каждый день вводим в Гугле, их алгоритмы учатся показывать нам наиболее релевантную выдачу, чтобы мы могли найти именно то, что ищем.
  • В роботехнике нейронные сети используются в выработке многочисленных алгоритмов для железных «мозгов» роботов.
  • Архитекторы компьютерных систем пользуются нейронными сетями для решения проблемы параллельных вычислений.
  • С помощью нейронных сетей математики могут разрешать разные сложные математические задачи.

Типы нейронных сетей

В целом для разных задач применяются различные виды и типы нейронных сетей, среди которых можно выделить:

  • сверточные нейронные сети,
  • реккурентные нейронные сети,
  • нейронную сеть Хопфилда.

Сверточные нейронные сети

Сверточные сети являются одними из самых популярных типов искусственных нейронных сетей. Так они доказали свою эффективность в распознавании визуальных образов (видео и изображения), рекомендательных системах и обработке языка.

  • Сверточные нейронные сети отлично масштабируются и могут использоваться для распознавания образов, какого угодно большого разрешения.
  • В этих сетях используются объемные трехмерные нейроны. Внутри одного слоя нейроны связаны лишь небольшим полем, названые рецептивным слоем.
  • Нейроны соседних слоев связаны посредством механизма пространственной локализации. Работу множества таких слоев обеспечивают особые нелинейные фильтры, реагирующие на все большее число пикселей.

Рекуррентные нейронные сети

Рекуррентными называют такие нейронные сети, соединения между нейронами которых, образуют ориентировочный цикл. Имеет такие характеристики:

  • У каждого соединения есть свой вес, он же приоритет.
  • Узлы делятся на два типа, вводные узлы и узлы скрытые.
  • Информация в рекуррентной нейронной сети передается не только по прямой, слой за слоем, но и между самими нейронами.
  • Важной отличительной особенностью рекуррентной нейронной сети является наличие так званой «области внимания», когда машине можно задать определенные фрагменты данных, требующие усиленной обработки.

Рекуррентные нейронные сети применяются в распознавании и обработке текстовых данных (в частотности на их основе работает Гугл переводчик, алгоритм Яндекс «Палех», голосовой помощник Apple Siri).

Нейронные сети, видео

И в завершение интересное видео о нейронных сетях.

Впервые об успехах глубокого обучения (deep learning) стало слышно в 2012 году, а через три года уже все только о нем и говорят. Так же было с интернетом в эпоху надувания инвестиционного пузыря. А поскольку в нейронные сети делаются сейчас немаленькие вложения, то смело можно говорить о новом пузыре .

Интернет было легко демонстрировать: сначала быстрая (по сравнению с бумажной) электронная почта, потом красочные вебсайты, доступные на любом подключенном к Сети компьютере. В глубоком обучении все не так: внимание к нему есть, а продемонстрировать что-то конкретное нельзя. Действительно, что связывает программы распознавания речи и программы автоматического перевода, программы определения неисправностей нефтегазового оборудования и программы синтеза текста, описывающего фотоснимки?



Это разнообразие не случайно: если интернет – это просто вид связи, то глубокие нейронные сети (deep neural networks, DNN) – по сути, новый тип программ, столь же универсальный, как и традиционные компьютерные программы. Эта универсальность доказана теоретически: нейронная сеть в теории может бесконечно точно аппроксимировать любую функцию многих переменных – а еще проводить вычисления , эквивалентные вычислениям машины Тьюринга .

Сети, которые нужно учить

Передавать информацию по интернету можно очень однообразно, унифицированными пакетами, на этой идее он и построен. А вот генерировать информацию и потреблять ее можно по-разному. Компьютерные программы, которые этим занимаются, очень разные. Нейронные сети такие же, они обеспечивают такое же разнообразие обработки.

Описывать сегодня, что такое нейронные сети – это описывать в конце пятидесятых годов, что такое традиционные компьютерные программы (а язык Фортран был выпущен в свет в 1957 году) – если бы вы начали бы рассказывать, что компьютеры будут управлять зажиганием в каждом автомобиле, а также показывать порнофильмы на экранах телефонов, вас бы подняли на смех.

Если сейчас вам рассказать, что вы будете беседовать с нейронной компьютерной сетью в вашем планшете, и нейронная сеть будет управлять автомобилем без водителя, вы тоже не поверите – а зря.

Кстати, «порнокартинки» в социальных сетях уже обнаруживают не люди, а сами сети . А ведь этим в мире занимались 100 тыс. человек, которые отсматривали терабайты и терабайты фото и видео. Мир обработки данных с появлением глубокого обучения вдруг начал меняться, и стремительно.

В отличие от традиционных компьютерных программ, нейронные сети не нужно «писать», их нужно «учить». И их можно научить тому, что бесконечно трудно (если вообще возможно) воплотить традиционной программной инженерией. Например, нейронные сети уже научились распознавать аудио и видео на уровне людей – и даже лучше них. Или наоборот, создавать аудио и видео – если у вас есть воплощенное в наученной глубокой нейронной сети понимание изображений каких-то объектов, это же понимание можно использовать и для создания изображений этих объектов. Синтез голоса, текста и изображений еще не появился на рынке, но эксперименты уже показывают успехи, раньше в этой области недостижимые . Более того, нейронные сетки могут не только анализировать данные, но и выдавать команды. Так, они научились играть в игры Atari 2600, причем во многие даже лучше человека, и их не пришлось специально для этого программировать .

Как это стало возможным только сегодня? Почему таких результатов не достигли давно, еще до появления того же интернета? Ведь рассуждения о возможностях нейронных сетей ведутся с тех же 50-х годов прошлого века!

Во-первых, стало понятно, как научить глубокие нейронные сети – какая там работает математика. Глубокая нейронная сеть – значит, с глубиной больше двух слоев. Если слоев меньше, то речь идет о мелком (shallow) обучении. Если число слоев больше десяти, то говорят об очень глубоком обучении, но пока что такое встречается редко. Раньше нейронные сети пытались учить методом проб и ошибок (он же – метод «научного тыка»), и так получалось обучать только мелкие сети. Со временем появилось понимание математики многослойных нейронных сетей, их стало возможно проектировать, пришло понимание, как создавать новые виды сетей и обеспечить их обучаемость .

Во-вторых, работает нейронная сеть быстро, но обучается очень медленно, и для этого требуются огромные объемы данных – big data . И чем больше слоев в нейронной сети, тем больше у такой сети запросы к вычислительной мощности при обучении. По факту, еще совсем недавно нейронные сети можно было научить чему-либо только на суперкомпьютере.



Сегодня ситуация изменилась, так как к работе с нейронными сетями подключили видеокарты – и это ускорило их обучение в десяток раз. Но даже настолько ускоренное обучение часто означает многие часы и даже дни, а иногда и недели, расчетов. Единственное, что утешает, это то, что в случае традиционного программирования для решения таких же задач потребовались бы не то что недели, а годы работы программистов.

Но после того, как глубокая нейронная сеть обучена, ее работа обычно в сотни и тысячи раз быстрее, чем у традиционных алгоритмов. Программа занимает и в сотни раз меньше оперативной памяти при лучшем качестве результатов.

« Нейросетьмастера»

Необычные свойства этих сетей привело к тому, что практически все международные соревнования по анализу данных выигрывают глубокие нейронные сети. И если у вас стоит какая-то задача анализа данных, а этих данных очень и очень много, то большой шанс, что в таком случае глубокие нейронные сети тоже выиграют.

Профессия тех, кто занимается нейронными сетями, даже пока не имеет названия. Если на заре интернета появилось понятие «вебмастер» (и просуществовало целых пять или шесть лет), то аналогичной «нейросетьмастер»-профессии пока нет. В области big data такие специалисты называют себя «учеными данных» (data scientists), но все-таки их работа имеет ту же инженерную природу, что и работа программистов. Инженеры измеряют, анализируют, проектируют, строят и целевые системы, и инструменты для инженерии. Программная инженерия (software engineering) отличается от компьютерной науки (computer science). С нейронными сетями то же самое: названия профессии пока нет, но уже есть инженеры, которые вам помогут их создать, обучить и использовать . По счастью, за последний год появилась развитая инфраструктура для новой профессии: университетские учебные курсы, десятки тьюториалов, книги, соревновательные и тренировочные площадки, огромное количество свободных программ. Только в русскоязычном сообществе глубокого обучения ВКонтакте сегодня

Введение

1. Искусственные нейронные сети

1.1 Параллели из биологии

1.2 Определение ИНС

1.3 Архитектура нейронной сети

1.4 Сбор данных для нейронной сети

2 Обучение

2.1 Алгоритм обратного распространения

2.2 Переобучение и обобщение

2.3 Модели теории адаптивного резонанса

3 Многослойный персептрон (MLP)

3.1 Обучение многослойного персептрона

4. Вероятностная нейронная сеть

5. Обобщенно-регрессионная нейронная сеть

6. Линейная сеть

7. Сеть Кохонена

8. Кластеризация

8.1 Оценка качества кластеризации

8.2 Процесс кластеризации

8.3 Применение кластерного анализа

1. Искусственные нейронные сети

Иску́сственные нейро́нные се́ти (ИНС) - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети Маккалока и Питтса. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения, обучение нейронных сетей - это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть - способ решения проблемы эффективного параллелизма. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения - одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных.

1.1 Параллели из биологии

Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга (Patterson, 1996). Основной областью исследований по искусственному интеллекту в 60-е - 80-е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на представлении, что процесс нашего мышления построен на манипуляциях с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не ухватывают некоторые ключевые аспекты человеческого интеллекта. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственных интеллект, необходимо построить систему с похожей архитектурой.

Мозг состоит из очень большого числа (приблизительно 10,000,000,000) нейронов, соединенных многочисленными связями (в среднем несколько тысяч связей на один нейрон, однако это число может сильно колебаться). Нейроны - это специальная клетки, способные распространять электрохимические сигналы. Нейрон имеет разветвленную структуру ввода информации (дендриты), ядро и разветвляющийся выход (аксон). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему аксону. Через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).

Интенсивность сигнала, получаемого нейроном (а следовательно и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет протяженность, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение заключается в первую очередь в изменениях "силы" синаптических связей. Например, в классическом опыте Павлова, каждый раз непосредственно перед кормлением собаки звонил колокольчик, и собака быстро научилась связывать звонок колокольчика с пищей. Синаптические связи между участками коры головного мозга, ответственными за слух, и слюнными железами усилились, и при возбуждении коры звуком колокольчика у собаки начиналось слюноотделение.

Таким образом, будучи построен из очень большого числа совсем простых элементов (каждый из которых берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный уровень, передает дальше двоичный сигнал), мозг способен решать чрезвычайно сложные задачи. Разумеется, мы не затронули здесь многих сложных аспектов устройства мозга, однако интересно то, что искусственные нейронные сети способны достичь замечательных результатов, используя модель, которая ненамного сложнее, чем описанная выше.

Рис. 1 Нейрон

1.2 Определение ИНС

Искусственная нейронная сеть (ИНС, нейронная сеть) - это набор нейронов, соединенных между собой. Как правило, передаточные функции всех нейронов в нейронной сети фиксированы, а веса являются параметрами нейронной сети и могут изменяться. Некоторые входы нейронов помечены как внешние входы нейронной сети, а некоторые выходы - как внешние выходы нейронной сети. Подавая любые числа на входы нейронной сети, мы получаем какой-то набор чисел на выходах нейронной сети. Таким образом, работа нейронной сети состоит в преобразовании входного вектора в выходной вектор, причем это преобразование задается весами нейронной сети.

Искусственная нейронная сеть это совокупность нейронных элементов и связей между ними.

Основу каждой искусственной нейронной сети составляют относительно простые, в большинстве случаев - однотипные, элементы (ячейки), имитирующие работу нейронов мозга (далее под нейроном мы будем подразумевать искусственный нейрон, ячейку искусственной нейронной сети).


Рис. 2 - Искусственный нейрон

· Нейрон обладает группой синапсов - однонаправленных входных связей, соединенных с выходами других нейронов. Каждый синапс характеризуется величиной синоптической связи или ее весом w i .

· Каждый нейрон имеет текущее состояние, которое обычно определяется, как взвешенная сумма его входов:

· Нейрон имеет аксон - выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Выход нейрона есть функция его состояния:

Функция f называется функцией активации.



Рис. 3 - Функция активации

Функция активации может иметь разный вид:

· пороговый (рис. 3.a),

· кусочно-линейный (рис. 3.б),

· сигмоид(рис. 3.в, 3.г).

Множество всех нейронов искусственной нейронной сети можно разделить на подмножества - т.н. слои. Взаимодействие нейронов происходит послойно.

Слой искусственной нейронной сети - это множество нейронов на которые в каждый такт времени параллельно поступают сигналы от других нейронов данной сети

Выбор архитектуры искусственной нейронной сети определяется задачей. Для некоторых классов задач уже существуют оптимальные конфигурации. Если же задача не может быть сведена ни к одному из известных классов, разработчику приходится решать задачу синтеза новой конфигурации. Проблема синтеза искусственной нейронной сети сильно зависит от задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант искусственной нейронной сети получается опытным путем.

Искусственные нейронные сети могут быть программного и аппаратного исполнения. Реализация аппаратная обычно представляет собой параллельный вычислитель, состоящий из множества простых процессоров.

1.3 Архитектура нейронной сети

ИНС может рассматриваться как направленный граф со взвешенными связями, в котором искусственные нейроны являются узлами. По архитектуре связей ИНС могут быть сгруппированы в два класса (рис. 4): сети прямого распространения, в которых графы не имеют петель, и рекуррентные сети, или сети с обратными связями.

В первой половине 2016 года мир услышал о множестве разработок в области нейронных сетей - свои алгоритмы демонстрировали Google (сеть-игрок в го AlphaGo), Microsoft (ряд сервисов для идентификации изображений), стартапы MSQRD, Prisma и другие.

В закладки

Редакция сайт рассказывает, что из себя представляют нейронные сети, для чего они нужны, почему захватили планету именно сейчас, а не годами раньше или позже, сколько на них можно заработать и кто является основными игроками рынка. Своими мнениями также поделились эксперты из МФТИ, «Яндекса», Mail.Ru Group и Microsoft.

Что собой представляют нейронные сети и какие задачи они могут решать

Нейронные сети - одно из направлений в разработке систем искусственного интеллекта. Идея заключается в том, чтобы максимально близко смоделировать работу человеческой нервной системы - а именно, её способности к обучению и исправлению ошибок. В этом состоит главная особенность любой нейронной сети - она способна самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.

Нейросеть имитирует не только деятельность, но и структуру нервной системы человека. Такая сеть состоит из большого числа отдельных вычислительных элементов («нейронов»). В большинстве случаев каждый «нейрон» относится к определённому слою сети. Входные данные последовательно проходят обработку на всех слоях сети. Параметры каждого «нейрона» могут изменяться в зависимости от результатов, полученных на предыдущих наборах входных данных, изменяя таким образом и порядок работы всей системы.

Руководитель направления «Поиск Mail.ru» в Mail.Ru Group Андрей Калинин отмечает, что нейронные сети способны решать такие же задачи, как и другие алгоритмы машинного обучения, разница заключается лишь в подходе к обучению.

Все задачи, которые могут решать нейронные сети, так или иначе связаны с обучением. Среди основных областей применения нейронных сетей - прогнозирование, принятие решений, распознавание образов, оптимизация, анализ данных.

Директор программ технологического сотрудничества Microsoft в России Влад Шершульский замечает, что сейчас нейросети применяются повсеместно: «Например, многие крупные интернет-сайты используют их, чтобы сделать реакцию на поведение пользователей более естественной и полезной своей аудитории. Нейросети лежат в основе большинства современных систем распознавания и синтеза речи, а также распознавания и обработки изображений. Они применяются в некоторых системах навигации, будь то промышленные роботы или беспилотные автомобили. Алгоритмы на основе нейросетей защищают информационные системы от атак злоумышленников и помогают выявлять незаконный контент в сети».

В ближайшей перспективе (5-10 лет), полагает Шершульский, нейронные сети будут использоваться ещё шире:

Представьте себе сельскохозяйственный комбайн, исполнительные механизмы которого снабжены множеством видеокамер. Он делает пять тысяч снимков в минуту каждого растения в полосе своей траектории и, используя нейросеть, анализирует - не сорняк ли это, не поражено ли оно болезнью или вредителями. И обрабатывает каждое растение индивидуально. Фантастика? Уже не совсем. А через пять лет может стать нормой. - Влад Шершульский, Microsoft

Заведующий лабораторией нейронных систем и глубокого обучения Центра живых систем МФТИ Михаил Бурцев приводит предположительную карту развития нейронных сетей на 2016-2018 годы:

  • системы распознавания и классификации объектов на изображениях;
  • голосовые интерфейсы взаимодействия для интернета вещей;
  • системы мониторинга качества обслуживания в колл-центрах;
  • системы выявления неполадок (в том числе, предсказывающие время технического обслуживания), аномалий, кибер-физических угроз;
  • системы интеллектуальной безопасности и мониторинга;
  • замена ботами части функций операторов колл-центров;
  • системы видеоаналитики;
  • самообучающиеся системы, оптимизирующие управление материальными потоками или расположение объектов (на складах, транспорте);
  • интеллектуальные, самообучающиеся системы управления производственными процессами и устройствами (в том числе, робототехнические);
  • появление систем универсального перевода «на лету» для конференций и персонального использования;
  • появление ботов-консультантов технической поддержки или персональных ассистентов, по функциям близким к человеку.

Директор по распространению технологий «Яндекса» Григорий Бакунов считает, что основой для распространения нейросетей в ближайшие пять лет станет способность таких систем к принятию различных решений: «Главное, что сейчас делают нейронные сети для человека, - избавляют его от излишнего принятия решений. Так что их можно использовать практически везде, где принимаются не слишком интеллектуальные решения живым человеком. В следующие пять лет будет эксплуатироваться именно этот навык, который заменит принятие решений человеком на простой автомат».

Почему нейронные сети стали так популярны именно сейчас

Учёные занимаются разработкой искусственных нейронных сетей более 70 лет. Первую попытку формализовать нейронную сеть относят к 1943 году, когда два американских учёных (Уоррен Мак-Каллок и Уолтер Питтс) представили статью о логическом исчислении человеческих идей и нервной активности.

Однако до недавнего времени, говорит Андрей Калинин из Mail.Ru Group, скорость работы нейросетей была слишком низкой, чтобы они могли получить широкое распространение, и поэтому такие системы в основном использовались в разработках, связанных с компьютерным зрением, а в остальных областях применялись другие алгоритмы машинного обучения.

Трудоёмкая и длительная часть процесса разработки нейронной сети - её обучение. Для того, чтобы нейронная сеть могла корректно решать поставленные задачи, требуется «прогнать» её работу на десятках миллионов наборов входных данных. Именно с появлением различных технологий ускоренного обучения и связывают распространение нейросетей Андрей Калинин и Григорий Бакунов.

Главное, что произошло сейчас, - появились разные уловки, которые позволяют делать нейронные сети, значительно меньше подверженные переобучению.- Григорий Бакунов, «Яндекс»

«Во-первых, появился большой и общедоступный массив размеченных картинок (ImageNet), на которых можно обучаться. Во-вторых, современные видеокарты позволяют в сотни раз быстрее обучать нейросети и их использовать. В-третьих, появились готовые, предобученные нейросети, распознающие образы, на основании которых можно делать свои приложения, не занимаясь длительной подготовкой нейросети к работе. Всё это обеспечивает очень мощное развитие нейросетей именно в области распознавания образов», - замечает Калинин.

Каковы объёмы рынка нейронных сетей

«Очень легко посчитать. Можно взять любую область, в которой используется низкоквалифицированный труд, - например, работу операторов колл-центров - и просто вычесть все людские ресурсы. Я бы сказал, что речь идет о многомиллиардном рынке даже в рамках отдельной страны. Какое количество людей в мире задействовано на низкоквалифицированной работе, можно легко понять. Так что даже очень абстрактно говоря, думаю, речь идет о стомиллиардном рынке во всем мире», - говорит директор по распространению технологий «Яндекса» Григорий Бакунов.

По некоторым оценкам, больше половины профессий будет автоматизировано – это и есть максимальный объём, на который может быть увеличен рынок алгоритмов машинного обучения (и нейронных сетей в частности).- Андрей Калинин, Mail.Ru Group

«Алгоритмы машинного обучения - это следующий шаг в автоматизации любых процессов, в разработке любого программного обеспечения. Поэтому рынок как минимум совпадает со всем рынком ПО, а, скорее, превосходит его, потому что становится возможно делать новые интеллектуальные решения, недоступные старому ПО», - продолжает руководитель направления «Поиск Mail.ru» в Mail.Ru Group Андрей Калинин.

Зачем разработчики нейронных сетей создают мобильные приложения для массового рынка

В последние несколько месяцев на рынке появилось сразу несколько громких развлекательных проектов, использующих нейронные сети - это и популярный видеосервис , который социальная сеть Facebook, и российские приложения для обработки снимков (в июне инвестиции от Mail.Ru Group) и и другие.

Способности собственных нейронных сетей демонстрировали и Google (технология AlphaGo выиграла у чемпиона в го; в марте 2016 года корпорация продала на аукционе 29 картин, нарисованных нейросетями и так далее), и Microsoft (проект CaptionBot , распознающий изображения на снимках и автоматически генерирующий подписи к ним; проект WhatDog , по фотографии определяющий породу собаки; сервис HowOld , определяющий возраст человека на снимке и так далее), и «Яндекс» (в июне команда встроила в приложение «Авто.ру» сервис для распознавания автомобилей на снимках; представила записанный нейросетями музыкальный альбом; в мае создала проект LikeMo.net для рисования в стиле известных художников).

Такие развлекательные сервисы создаются скорее не для решения глобальных задач, на которые и нацелены нейросети, а для демонстрации способностей нейронной сети и проведения её обучения.

«Игры - характерная особенность нашего поведения как биологического вида. С одной стороны, на игровых ситуациях можно смоделировать практически все типичные сценарии человеческого поведения, а с другой - и создатели игр и, особенно, игроки могут получить от процесса массу удовольствия. Есть и сугубо утилитарный аспект. Хорошо спроектированная игра приносит не только удовлетворение игрокам: в процессе игры они обучают нейросетевой алгоритм. Ведь в основе нейросетей как раз и лежит обучение на примерах», - говорит Влад Шершульский из Microsoft.

«В первую очередь это делается для того, чтобы показать возможности технологии. Другой причины, на самом деле, нет. Если речь идёт о Prisma, то понятно, для чего это делали они. Ребята построили некоторый пайплайн, который позволяет им работать с картинками. Для демонстрации этого они избрали для себя довольно простой способ создания стилизаций. Почему бы и нет? Это просто демонстрация работы алгоритмов», - говорит Григорий Бакунов из «Яндекса».

Другого мнения придерживается Андрей Калинин из Mail.Ru Group: «Конечно, это эффектно с точки зрения публики. С другой стороны, я бы не сказал, что развлекательные продукты не могут быть применены в более полезных областях. Например, задача по стилизации образов крайне актуальна для целого ряда индустрий (дизайн, компьютерные игры, мультипликация - вот лишь несколько примеров), и полноценное использование нейросетей может существенно оптимизировать стоимость и методы создания контента для них».

Основные игроки на рынке нейронных сетей

Как отмечает Андрей Калинин, по большому счёту, большинство присутствующих на рынке нейронных сетей мало чем отличаются друг от друга. «Технологии у всех примерно одинаковые. Но применение нейросетей - это удовольствие, которое могут позволить себе далеко не все. Чтобы самостоятельно обучить нейронную сеть и поставить на ней много экспериментов, нужны большие обучающие множества и парк машин с дорогими видеокартами. Очевидно, что такие возможности есть у крупных компаний», - говорит он.

Среди основных игроков рынка Калинин упоминает Google и её подразделение Google DeepMind, создавшее сеть AlphaGo, и Google Brain. Собственные разработки в этой области есть у Microsoft - ими занимается лаборатория Microsoft Research. Созданием нейронных сетей занимаются в IBM, Facebook (подразделение Facebook AI Research), Baidu (Baidu Institute of Deep Learning) и другие. Множество разработок ведётся в технических университетах по всему миру.

Директор по распространению технологий «Яндекса» Григорий Бакунов отмечает, что интересные разработки в области нейронных сетей встречаются и среди стартапов. «Я бы вспомнил, например, компанию ClarifAI . Это небольшой стартап, сделанный когда-то выходцами из Google. Сейчас они, пожалуй, лучше всех в мире умеют определять содержимое картинки». К таким стартапам относятся и MSQRD, и Prisma, и другие.

В России разработками в области нейронных сетей занимаются не только стартапы, но и крупные технологические компании - например, холдинг Mail.Ru Group применяет нейросети для обработки и классификации текстов в «Поиске», анализа изображений. Компания также ведёт экспериментальные разработки, связанные с ботами и диалоговыми системами.

Созданием собственных нейросетей занимается и «Яндекс»: «В основном такие сети уже используются в работе с изображениями, со звуком, но мы исследуем их возможности и в других областях. Сейчас мы много экспериментов ставим в использовании нейросетей в работе с текстом». Разработки ведутся в университетах: в «Сколтехе», МФТИ, МГУ, ВШЭ и других.

Нейронные сети (искусственная нейронная сеть) - это система соединенных и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, эти процессоры вместе способны выполнять довольно сложные задачи, поскольку нейронные сети обучаются в процессе работы.

Если раньше нейросети считались чем-то диковинным, то сейчас доступ к таким инструментам есть у многих. Причем эта отрасль развивается невероятными темпами: совсем недавно нейросети учились рисовать картины, и уже сейчас (и даже способны !). Поэтому вполне логично, что человек решил использовать искусственный интеллект не только для новых открытий, но и также для упрощения повседневных задач.

Илон Маск после того, как колонизировал Марс

Джеффри Хинтон - один из создателей концепции глубокого обучения, призер премии Тьюринга 2019 года и инженер . На прошлой неделе, во время конференции разработчиков I/O, Wired взял у него интервью и обсудил его увлечение мозгом и возможностью смоделировать компьютер на основе нейронной структуры мозга. Долгое время эти идеи считались дурацкими. Интересная и увлекательная беседа о сознании, будущих планах Хинтона и о том, можно ли научить компьютеры видеть сны.